Introduction to Term Rewriting: Techniques and Applications

Termination with the Recursive Path Ordering

Departamento de Sistemas Informáticos y Computación (DSIC)
Universidad Politécnica de Valencia (UPV)

Salvador Lucas
http://www.dsic.upv.es/~slucas

Summer School on Foundations of Information Technologies – FIT 2009
The recursive path ordering (rpo) \succ_{rpo} is a well-known syntactic ordering over terms [Der79]. Its definition requires two main ingredients:

1. A precedence (i.e., a reflexive and transitive relation) $\succeq_{\mathcal{F}}$ over the signature \mathcal{F} (i.e., $\succeq_{\mathcal{F}} \subseteq \mathcal{F} \times \mathcal{F}$) is given to compare symbols in \mathcal{F}.

2. Extensions of \succ_{rpo} from terms to tuples of terms (t_1, \ldots, t_n) for some $n > 1$. Here, we consider two basic extensions:
 - **Lexicographic** extension: the tuple elements are compared from left to right.
 - **Multiset** extension: the tuple elements are compared disregarding the order in which they have been arranged.
Lexicographic extension of an ordering

Definition (Lexicographic extension)

Given a relation \(R \) over a set \(A \), we extend \(R \) to a relation \(R^{\text{lex}} \) on \(A^n \) for some \(n > 0 \) as follows:

\[
(a_1, a_2, \ldots, a_n) \; R^{\text{lex}} \; (b_1, b_2, \ldots, b_n) \; \text{if}
\begin{cases}
 a_1 \; R \; b_1 \; \text{or else} \\
 a_1 = b_1 \; \text{and} \; (a_2, \ldots, a_n) \; R^{\text{lex}} \; (b_2, \ldots, b_n)
\end{cases}
\]

Example If \(> \mathbb{N} \) is the usual ordering over natural numbers, we have:

\[
(3, 1) >^{\text{lex}} \mathbb{N} (2, 3) \quad \text{and} \quad (3, 3) >^{\text{lex}} \mathbb{N} (3, 1)
\]

Proposition

If \(> \) is a strict ordering, then \(>^{\text{lex}} \) is a strict ordering. If \(> \) is well-founded, then \(>^{\text{lex}} \) is well-founded.
Multiset extension of an ordering

Given a set A, a multiset $M : A \rightarrow \mathbb{N}$ is a mapping from A into \mathbb{N} representing a collection of elements in A where duplicates are allowed but the ordering does not matter.

Let $\mathcal{M}(A)$ be the set of all multisets over a set A.

Example The multisets $M = \{1, 2, 2, 3\}$ (formally $M(1) = 1$, $M(2) = 2$, $M(3) = 1$ and $M(n) = 0$ for all $n \in \mathbb{N} - \{1, 2, 3\}$), $\{2, 1, 2, 3\}$ and $\{2, 2, 1, 3\}$ are the same.
Multiset extension of an ordering

Definition (Multiset extension)

Given a relation R over a set A, we extend R to a relation R_{mul} on $\mathcal{M}(A)$ as follows: $M R_{mul} N$ if $N = (M - X) \cup Y$ for multisets $X, Y \in \mathcal{M}(A)$ such that

$$\emptyset \not= X \subseteq M \quad \text{and} \quad \forall y \in Y, \exists x \in X, x R y.$$

Example We have:

\[
\begin{align*}
\{\{3, 5\}\} & \succ_{N}^{mul} \{\{3, 4, 4, 2\}\} & \{\{3, 3, 4, 0\}\} & \succ_{N}^{mul} \{\{3, 4\}\} \\
\{\{3, 3, 4, 0\}\} & \succ_{N}^{mul} \{\{3, 2, 2, 1, 1, 1, 4, 0\}\} & \{\{3, 3, 4, 0\}\} & \succ_{N}^{mul} \{\{3, 3, 3, 3, 2, 2\}\} \\
\{\{3, 3, 4, 0\}\} & \succ_{N}^{mul} \{\emptyset\}
\end{align*}
\]

Thus, if \succ is an ordering, we have $M \succ_{N}^{mul} N$ if we can obtain M out from N by either:

1. **Removing** some (possibly duplicated) elements $x \in X$, or
2. **Replacing** some elements $x \in X$ by new but *smaller* elements $y \in Y$.

Salvador Lucas

FIT’09
Multiset extension of an ordering

Definition (Multiset ordering over tuples)

Given an ordering $>$ over a set A, we extend $>$ to an ordering $>^{mul}$ on tuples in A^n (for some $n > 0$) as follows:

$$(a_1,\ldots,a_n) >^{mul} (b_1,\ldots,b_n) \text{ if } \{a_1,\ldots,a_n\} >^{mul} \{b_1,\ldots,b_n\}$$

Proposition

If $>$ is a strict ordering, then $>^{mul}$ is a strict ordering. If $>$ is well-founded, then $>^{mul}$ is well-founded.
Combining lexicographic and multiset extensions

In the definition of recursive path ordering, we use the following notion:

Definition (Status function)

Let \mathcal{F} be a signature. Given $f \in \mathcal{F}$, a *status* function τ for \mathcal{F} returns

$$\tau(f) \in \{\text{lex}_{\pi_f}, \text{mul}\}$$

(where π_f is a permutation of $\{1, \ldots, \text{ar}(f)\}$) for each $f \in \mathcal{F}$.

The meaning of lex_{π_f} in the definition above is: *when comparing tuples of terms* $\vec{s} = (s_1, s_2, \ldots, s_n)$ and $\vec{t} = (t_1, t_2, \ldots, t_k)$ *using* $\triangleright_{\text{lex}_{\pi_f}}$, *first apply* π_f *to both* \vec{s} *and* \vec{t}; *then use the lexicographic extension as defined above*.

Example

1. lex_{π_f} with $\pi_f = (1, 2, \ldots, k)$ for a k-ary symbol f corresponds to the usual *left-to-right* lexicographic comparison (and we often just write lex).

2. lex_{π_f} with $\pi_f = (k, k - 1, \ldots, 1)$ for a k-ary symbol f corresponds to the *right-to-left* lexicographic comparison.
The Recursive Path Ordering (RPO)

Definition (Recursive Path Ordering with status)

Let \mathcal{F} be a signature, $\succ_{\mathcal{F}}$ be a strict ordering (precedence) on \mathcal{F}, and τ be a status function for \mathcal{F}. An ordering $>_{rpo}$ (recursive path ordering) on $\mathcal{T}(\mathcal{F}, \mathcal{X})$ is given as follows: for all terms $s, t \in \mathcal{T}(\mathcal{F}, \mathcal{X})$, $s >_{rpo} t$ if $s = f(s_1, \ldots, s_m)$ and

1. either $s_i = t$ or $s_i >_{rpo} t$ for some $s_i, 1 \leq i \leq m$, or
2. $t = g(t_1, \ldots, t_n)$, $s >_{rpo} t_i$ for all $i, 1 \leq i \leq n$ and either
 1. $f \succ_{\mathcal{F}} g$, or
 2. $f = g$ and $(s_1, \ldots, s_n) >_{rpo}^{\tau(f)} (t_1, \ldots, t_n)$

Roughly speaking, $s >_{rpo} t$ if

1. There is a subterm s' of s which is bigger than (or equal to) t, or
2. s is bigger than all the immediate subterms t_i of t and either
 - f is bigger than g (according to the precedence $\succ_{\mathcal{F}}$), or
 - f equals g but the tuple (s_1, \ldots, s_n) accompanying f in s is bigger than the one accompanying g in t (i.e., (t_1, \ldots, t_n)).
The Recursive Path Ordering (RPO)

Example For the signature $\mathcal{F} = \{ack, s, 0\}$ with $ar(ack) = 2$, $ar(s) = 1$, $ar(0) = 0$ and the precedence \succ given by $ack \succ s$, we have:

- $ack(0, M) \succ_{rpo} s(M)$ because $ack(0, M) \succ_{rpo} M$ (this is because M is a subterm of $ack(0, M)$), and $ack \succ s$.
- We have that $ack(s(M), 0) \succ_{rpo} ack(M, s(0))$. On one side,

$$ack(s(M), 0) \succ_{rpo} M,$$

because M is a subterm of $ack(s(M), 0)$ and

$$ack(s(M), 0) \succ_{rpo} s(0)$$

(because $ack \succ s$ and $ack(s(M), 0) \succ_{rpo} 0$). On the other hand, we clearly have:

$$(s(M), 0) \succ_{\text{lex}}^{rpo} (M, s(0)).$$
The Recursive Path Ordering (RPO)

Theorem (RPO as a reduction ordering)

Let \mathcal{F} be a finite signature and \succ be a strict precedence over \mathcal{F}. Then, \succ_{rpo} is a reduction ordering.

Therefore, we can use the recursive path ordering for proving termination of TRSs over finite signatures.

Example The following TRS \mathcal{R} encoding Ackermann’s function:

- $\text{ack}(0, M) \rightarrow s(M)$
- $\text{ack}(s(M), 0) \rightarrow \text{ack}(M, s(0))$
- $\text{ack}(s(M), s(N)) \rightarrow \text{ack}(M, \text{ack}(s(M), N))$

can be proved terminating by an RPO (i.e., it is RPO-terminating).
Termination with the Recursive Path Ordering

The Recursive Path Ordering (RPO)

Definition (RPO-termination)

A TRS $\mathcal{R} = (\mathcal{F}, R)$ is *RPO-terminating* if there is an RPO \succ_{rpo} for \mathcal{F} which is *compatible* with the rules of \mathcal{R}, i.e., $\ell \succ_{rpo} r$ for all $\ell \rightarrow r \in R$.

The following results provide information about the *complexity* of proving RPO-termination.

Theorem (Comparing terms using RPO)

Let \mathcal{F} be a signature, $s, t \in T(\mathcal{F}, \mathcal{X})$, and \succ_{rpo} be an RPO for \mathcal{F}. We can decide whether $s \succ_{rpo} t$ in *polynomial* time over the *size* of s and t.

Theorem (Deciding RPO-termination)

*RPO-termination of finite TRSs is *decidable* but *NP-complete*.
N. Dershowitz.

A note on simplification orderings.